Piecewise linear differential equations and integrate-and-fire neurons: insights from two-dimensional membrane models.
نویسندگان
چکیده
We derive and study two-dimensional generalizations of integrate-and-fire models which can be found from a piecewise linear idealization of the FitzHugh-Nagumo or Morris-Lecar model. These models give rise to new properties not present in one-dimensional integrate-and-fire models. A detailed analytical study of the models is presented. In particular, (i) for the piecewise linear FitzHugh-Nagumo model, we determine analytically the bistability regime between stationary solutions and oscillations, that is, typical for class-II models. (ii) In the piecewise Morris-Lecar model, we find a noncanonical class-I transition from a stationary state to oscillations with logarithmic dependence similar to that found for leaky integrate-and-fire models. (iii) Furthermore, we establish a relation to the recently proposed resonate-and-fire model and show that a short input current pulse can trigger several spikes.
منابع مشابه
Nonsmooth Bifurcations of Mean Field Systems of Two-Dimensional Integrate and Fire Neurons
Mean-field systems have been recently derived that adequately predict the behaviors of large networks of coupled integrate-and-fire neurons [14]. The mean-field system for a network of neurons with spike frequency adaptation is typically a pair of differential equations for the mean adaptation and mean synaptic gating variable of the network. These differential equations are non-smooth, and in ...
متن کاملLow-dimensional spike rate models derived from networks of adaptive integrate-and-fire neurons: Comparison and implementation
The spiking activity of single neurons can be well described by a nonlinear integrate-and-fire model that includes somatic adaptation. When exposed to fluctuating inputs sparsely coupled populations of these model neurons exhibit stochastic collective dynamics that can be effectively characterized using the Fokker-Planck equation. This approach, however, leads to a model with an infinite-dimens...
متن کاملNumerical solutions of two-dimensional linear and nonlinear Volterra integral equations: Homotopy perturbation method and differential transform method
متن کامل
Locally Contractive Dynamics in Generalized Integrate-and-Fire Neurons
Integrate-and-fire models of biological neurons combine differential equations with discrete spike events. In the simplest case, the reset of the neuronal voltage to its resting value is the only spike event. The response of such a model to constant input injection is limited to tonic spiking. We here study a generalized model in which two simple spike-induced currents are added. We show that t...
متن کاملA Generalized Linear Integrate-and-Fire Neural Model Produces Diverse Spiking Behaviors
For simulations of neural networks, there is a trade-off between the size of the network that can be simulated and the complexity of the model used for individual neurons. In this study, we describe a generalization of the leaky integrate-and-fire model that produces a wide variety of spiking behaviors while still being analytically solvable between firings. For different parameter values, the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 67 2 Pt 1 شماره
صفحات -
تاریخ انتشار 2003